Combinatorial vector fields and the valley structure of fitness landscapes.
نویسندگان
چکیده
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
منابع مشابه
Fitness Landscapes
Fitness landscapes are a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. A fitness landscape is a mapping from a configuration space that is equipped with some notion of adjacency, nearness, distance or accessibility, into the real numbers. Landscape theory has emerged as an attempt to devise suitable mathematical structures for descr...
متن کاملPredicting evolution and visualizing high-dimensional fitness landscapes
The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness ...
متن کاملDeconstructing the Big Valley Search Space Hypothesis
Abstract. The big valley hypothesis suggests that, in combinatorial optimisation, local optima of good quality are clustered and surround the global optimum. We show here that the idea of a single valley does not always hold. Instead the big valley seems to de-construct into several valleys, also called ‘funnels’ in theoretical chemistry. We use the local optima networks model and propose an ef...
متن کاملFitness Landscapes and Memetic Algorithm Design 3.1 Introduction 3.2 Fitness Landscapes of Combinatorial Problems
The notion of tness landscapes has been introduced to describe the dynamics of evolutionary adaptation in nature 40] and has become a powerful concept in evolutionary theory. Fitness landscapes are equally well suited to describe the behavior of heuristic search methods in optimization, since the process of evolution can be thought of as searching a collection of genotypes in order to nd the ge...
متن کاملThe Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration
Abstract. We use the Local Optima Network model to study the structure of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis holds that for TSP and other combinatorial problems, local optima are not randomly distributed, instead they tend to be clustered around the global optimum. However, a recent study has observed that, for solutions close in evaluation to the global optimum, this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of mathematical biology
دوره 61 6 شماره
صفحات -
تاریخ انتشار 2010